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Abstract

Problem Definition: This paper presents a data-driven approach to mitigate the effects

of air pollution from industrial plants on nearby cities by linking operational decisions with

weather conditions.

Academic Relevance: Our method combines predictive and prescriptive machine learning

models to forecast short-term wind speed and direction and recommend operational deci-

sions to reduce or pause the industrial plant’s production. We exhibit several trade-offs

between reducing environmental impact and maintaining production activities.

Method and Results: The predictive component of our framework employs various ma-

chine learning models, such as gradient-boosted tree-based models and ensemble methods,

for time series forecasting. The prescriptive component utilizes interpretable optimal policy

trees to propose multiple trade-offs, such as reducing dangerous emissions by 33-47% and

unnecessary costs by 40-63%. Our deployed models significantly reduced forecasting errors,

with a range of 38-52% for less than 12-hour lead time and 14-46% for 12 to 48-hour lead

time compared to official weather forecasts. We have successfully implemented the predic-

tive component at the OCP Safi site, which is Morocco’s largest chemical industrial plant,

and are currently in the process of deploying the prescriptive component.

Managerial Insights: Our framework provides a pathway for sustainable industrial de-

velopment by forgoing the trade-off between pollution and industrial activity by linking

operational decisions with data-driven weather conditions. This represents a significant step

in optimizing factory operations and improving sustainability efforts. As such, it has the
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potential to modernize how factories approach planning and resource allocation under en-

vironmental compliance. Our predictive component has significantly improved production

efficiency, allowing for better resource allocation and reduced downtime. This not only led

to cost savings for the company but also helped to reduce the environmental impact of

production by minimizing air pollution.

Keywords: Air Pollution Management, Machine Learning, Sustainability, Predictive and

Prescriptive Analytics, Plant Operations

1. Introduction

Sustainable industrial development is an important issue shared by many countries. The

trade-offs between economic activities, environmental pollution, and public health must be

managed attentively. Studies show that urbanization and industrialization have released

many environmental toxins into the atmosphere over the last 200 years [1, 2, 3]. In partic-

ular, emissions from chemical power plants can pose significant health risks to those living

in the surrounding area [4, 5]. Therefore, there is a pressing need to develop technolo-

gies and infrastructures to simultaneously achieve economic objectives and environmental

preservation.

As data availability and computing methods continue to advance, there has been growing

interest in applying machine learning techniques to air pollution management. Previous

research has primarily focused on predicting the health consequences of pollution exposure

[6]. Additionally, various studies have attempted to forecast air pollution, air quality, and

airborne particle concentrations using data such as satellite imagery, weather data, and

air quality monitoring data [7, 8, 9, 10, 11]. Despite these efforts, there remains a lack

of literature connecting air pollution prediction to decision-making and mitigation actions.

Earlier works on technology-aided tools to reduce pollution include [12], which discusses a

mathematical formulation and algorithm for controlling air pollution using weather forecasts
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and numerical models to minimize control-related costs, and [13], which proposes a decision

support tool to find optimal Best Management Practice locations for minimizing diffuse

surface water pollution.

This paper tackles the critical issue of urban air pollution management by proposing

a novel plant operation scheduling methodology that leverages machine learning and opti-

mization. Our predictive and prescriptive framework links operational decisions to weather

forecasts to effectively minimize the impact of air pollution in industrial settings. To the best

of our knowledge, our work is the first attempt to reduce industrial air pollution through

machine learning. In addition, the framework is implemented and currently operational on

the Safi production site of the OCP group in Morocco. In summary, our contributions are

three-fold:

• A data-driven pollution framework incorporating two components: (i) a machine

learning-enhanced weather forecasting system that utilizes onsite sensors and official

forecasts (ii) an optimization-based operational decision recommendation system opti-

mizing the trade-off between potential pollution risk and operational loss. The predic-

tive component of our framework has been deployed and guides production planning

in real-time at the OCP Safi site since July 2021. The prescriptive component is under

implementation.

• Since implementation, our machine learning-enhanced forecasts significantly improved

accuracy: we reduced the next 12-hour wind forecasting errors by 38-52% and the next

12 to 48-hour errors by 14-46%. In addition, our optimization-based operational deci-

sion framework is shown to reduce potential polluting cases by 33-47% while achieving

40-63% operational savings.

• Our work offers a case study of achieving industrial activities while controlling air pol-

lution’s impact on surrounding urban cities. We hope to inspire future work applying
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machine learning and data science for sustainable industrial development.

2. Methodology

2.1. The Previous Operational Procedure at Safi

The OCP group is the world’s largest phosphate producer, controlling 75% of the world’s

phosphate reserves and accounting for more than 30% of global production. The OCP Safi

site was established in the 1970s to produce various phosphates for export. However, fertilizer

production is a known contributor to air pollution, releasing harmful airborne substances

such as sulfur dioxide (SO2), sulfur trioxide (SO3), hydrogen sulfide (H2S), and hydrogen

fluoride (HF), as well as fine and coarse dust, which can pose serious health risks such

as respiratory diseases and cancer [14]. The site is located 10 km southwest of the Safi

city center, with more than 300,000 residents. Due to the geographical location, weather

conditions play a critical role in air pollution dispersion. Depending on the wind speed and

direction, airborne pollution can be carried into Safi, thus posing a threat to public health

and bringing high respiratory and ocular discomfort. In 2013, the site set up a monitoring

procedure to reduce the amount of air pollution in the city with responsive production

rates — and consequently airborne emissions — depending on the meteorological weather

forecasts and real-time on-site wind monitoring system. This procedure schedules production

rates and personnel based on next-day weather forecasts. It uses real-time wind monitoring

systems to adjust in dangerous weather conditions, ensuring the safety of the surrounding

community.

Before this study, the main bottleneck of the procedure was the gap between meteoro-

logical forecasts and real-time conditions, thus leading to unnecessary and costly production

shutdowns or missed dangerous weather conditions, leading to negative health outcomes.

The operators in the Safi production site received operational weather forecasts from the

national meteorological agency every 12 hours for the next 48 hours. However, these fore-
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Figure 1: Predictive and prescriptive approach to plant operations scheduling.

casts are frequently inaccurate because they are calculated at a regional level and come with

a 5 to 7-hour lag-time due to the long computational costs of dynamical weather forecasts.

As a result, planning activities had no access to real-time forecast information and were

sensitive to uncertain weather conditions.

This study aims to develop a data-driven framework to reduce the impact of air pollution

from industrial plants on nearby cities by responsively adapting production levels based on

wind speed and direction. Our pipeline encompasses two parts: i) machine learning algo-

rithms producing more accurate and frequent wind forecasts by combining official weather

data and onsite real-time sensory data to aid short-to-medium term factory and personnel

planning; ii) an optimization-based framework to recommend real-time optimal operational

decisions taking into account the various forecasts from the machine learning models. Figure

1 illustrates our overarching methodology.
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2.2. Scenario Definition

The OCP Safi site developed a warning system to categorize weather conditions into

several scenarios to monitor the potential risk of wind carrying pollutants into the nearby

city of Safi. Scenarios are differentiated as either favorable (S1, S2, S2b, S3) or dangerous

(S3b, S4) based on wind speed and direction, as outlined in Table 1. This categorization

accounts for five wind speed buckets and three wind direction buckets, providing detailed

guidance on production rates for each scenario. A dangerous scenario is characterized by

low wind speed combined with an unfavorable wind direction, which results in pollutants

being directed toward and lingering in the city (see illustration in Figure 2). Based on the

real-time and predicted scenarios, operational decisions are made to reduce air pollution

according to the action rules outlined in Table 2.

Wind Favorable Wind Direction Very Unfavorable Wind Direction Unfavorable Wind Direction
Speed NW, N-NW, N, N-NE, NE, E-NE, E S-SW, S, S-SE E-SE, SE, SW, W-SW, W, W-NW
(m.s−1) 0◦ − 101.25◦ & 303.75◦ − 0◦ 146.25◦− 213.75◦ 101.25◦ − 146.25◦ & 213.75◦ − 303.75◦

V < 0.5 S3 a S4 S4
0.5 ≤ V < 1 S2 S3 b S2 b
1 < V ≤ 2 S1 S3 b S2 b
2 < V ≤ 4 S1 S3 b S2
4 < V S1 S1 S1

Table 1: Scenario definitions based on wind speed and direction, accounting for five wind speed buckets and
three wind direction buckets. Scenarios are differentiated as either favorable (S1, S2, S2b, S3a) or dangerous
(S3b, S4).

Scenario Underlying Scenario Characteristics Public Health Consequences
Type Scenarios

Favorable S1, S2, S2b, S3 High wind speed and/or favorable wind direction Limited
Dangerous S3b, S4 Low wind speed and unfavorable wind direction Pollutants directed toward and lingering in city

Table 2: Categorization of scenarios as favorable and dangerous based on wind speed and direction.

The effectiveness of the plant’s operational response to dynamic weather conditions is

contingent on the accuracy of real-time forecasts. If a dangerous scenario is projected in the

next three hours, the plant operators proactively adjust production levels accordingly. Once

at reduced capacity, production remains at this level until a favorable scenario is predicted

and real-time weather conditions become favorable. This highlights the critical importance
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Figure 2: Wind direction and wind speed determine the dissemination of pollutants. Winds coming from
the South with low speeds are the most dangerous conditions.

of precise weather forecasting, as inaccuracies can result in costly production and personnel

scheduling consequences.

Before our work, plant managers used official regional forecasts as mere guidance and

often relied on experience due to the low accuracy in near-term predictions. This led to

frequent inconsistencies and last-minute adjustments under unforeseen weather conditions,

underscoring the need for real-time, high-quality weather forecasts in informed decision-

making.

2.3. Predictive Methodology

Our predictive framework focuses on developing machine learning models to produce ac-

curate hourly wind forecasts by integrating official weather data and onsite real-time sensory

data to aid short-to-medium factory and personnel planning. Since July 2021, our predic-

tive framework has been implemented at the OCP Safi site, resulting in reduced production

downtime, improved resource allocation, and cost savings. This successful implementation
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serves as a model for other factories seeking to improve their sustainability efforts and reduce

their environmental impact.

Data Processing. We combined two datasets to make predictions: the official regional weather

forecast data and real-time weather measurement data collected with on-site sensors. Data

used in this study range from July 2015 to March 2022.

Official forecasts are received twice daily, around 6:00 am (GMT) and 6:00 pm (GMT)

from the Moroccan National Meteorological Department. These forecasts are produced by

traditional dynamical models with initial conditions and often take 5-7 hours of computa-

tional time. They provide hourly values for the next 48 hours for wind speed, wind direction,

humidity, solar irradiance, and temperature at the Safi site. We call this model the baseline

model in the rest of the paper. The on-site sensors measure the same five weather features

(wind speed, wind direction, humidity, solar irradiance, and temperature) at one-minute

intervals.

We first imputed the missing values caused by electronic or server malfunctions with

linear interpolation. We then averaged the measurement data over one-hour intervals. We

used the arithmetic average for the humidity, solar irradiance, and temperature, and the

vector average technique [15] for wind speed and direction (e.g., the vector average of a

southerly and a northerly wind of 5 m.s−1 gives a mean wind speed of 0 m.s−1 because

there is no resultant wind speed). We encoded the wind direction using the cosine and sine

transformations to avoid singularities at endpoints due to the cyclical nature of the feature.

Training data creation. We transformed the time-series data into a standard tabular form to

train traditional machine-learning models. To make wind predictions at time t for the hour

t+h, we concatenated the present and past 48 hours of weather measurement features at each

time step into a vector. Then, we appended the following features: the latest operational

forecast available at time t for wind speed, wind direction, pluviometry, and solar irradiance;
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the cosine and sine of the day and the hour corresponding to time t. Table 3 summarizes

the 304 features and associated processing techniques.

Feature Description Processing Technique Initial Number of
Feature Range features

Wind speed Vector average 0.00 - 14.20 m.s−1 49
Wind direction Vector average, cos/sin encoding [0, 360]◦ 49× 2
Solar irradiance Arithmetic average 0.0 - 978.4 W.m−2 49
Temperature Arithmetic average 4.8 - 46.7◦C 49
Pluviometry Arithmetic average 0.0 - 17.2 mm 49
Day of the year Cos/sin encoding 1 - 365 2
Hour of the day Cos/sin encoding 0 - 23 2
Official forecast for wind speed 0.0 - 16.5 m.s−1 1
Official forecast for wind direction Cos/sin encoding [0, 360]◦ 2
Official forecast for pluviometry 0.0 - 20.8 mm 1
Official forecast for solar irradiance 0 - 1074 W.m−2 1
Official forecast for temperature 3.2 - 43.1◦C 1

Table 3: Table recording all the features and processing techniques. The number of features obtained
accounts for concatenating the past 48-hour values.

Model Training. For the prediction task, we trained five different types of machine learning

models to predict wind speed and direction, including Elastic Net, Decision Trees, Random

Forest, LightGBM, and XGBoost. To handle the cyclical property for wind direction, we

predicted the cosine and sine of the angle instead of the raw angle degree. Predictions are

then converted back into scenario predictions using Table 1. We trained one model for each

lead time between 1 and 48 hours ahead, i.e., 48×3 regression models for wind speed, cosine,

and sine of wind direction. We performed hyperparameter tuning for each model using the

validation set as explained later in Section 2.5.

In addition, we trained ensemble models to predict wind speed and direction for every

lead time using predictions from these previous individual machine-learning models. En-

semble modeling is a well-established technique to leverage the strengths and limitations of

multiple models and benefit from their diversity. The principle is to combine the predictions

of the forecasting models available to obtain a more accurate, stable, and robust predictor.

In our case, we used the stacking [16] concept and tried several ensemblers, including deci-
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sion trees, regularized linear regression, and gradient-boosted trees. Elastic Net regression

performed the best, and we considered it our final ensemble model technique.

2.3.1. Qualitative Feedback from Real-World Implementation

Our collaboration with OCP’s software development team has seamlessly integrated our

weather forecasts into the company’s internal system (see Figure 3). As of July 2021,

the site manager and plant operators have been utilizing the forecasts produced by our

framework through a simple user interface. They check the hourly forecasts before scheduling

production shutdowns, leading to a significant reduction in production downtime.

Qualitative feedback from production managers has indicated that our forecasts are

substantially more accurate than official weather forecasts and provide valuable real-time

updates that are particularly advantageous during winter when wind conditions are more

unpredictable. This has improved factory planning and resource allocation, allowing for

more efficient production, better personnel scheduling, and cost savings for the company.

The successful implementation of our framework at OCP Safi is a testament to our ap-

proach’s effectiveness in optimizing factory operations. We believe that utilizing our frame-

work has the potential to advance how factories approach planning and resource allocation,

ultimately leading to improved sustainability efforts and environmental impact reduction.

2.4. Prescriptive Methodology

The management team at OCP Safi recognizes the importance of taking immediate

action in response to dangerous weather conditions. As a result, our focus is on utilizing

short-term (next 3 hours) weather predictions to inform plant operations. We employed

Optimal Policy Trees (OPT) [17] to determine the most optimal decision in real-time given

the forecasts made by the different machine learning models. Despite the imbalanced nature

of the data, with dangerous scenarios accounting for only 1.5-2% of the total observations,

our prescriptive models aim to balance the trade-off between financial savings and effective
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Figure 3: Screenshot of the software platform used by the plant operators in Safi. Our model predictions
for the next 3 hours are displayed on the upper left, while the baseline model is displayed on the upper
right. Below, the operator can check the real-time 1-min measurements of the previous 30 minutes to adapt
decisions.

pollution management. This approach is crucial to mitigate the potential for false negatives

in predictive models.

In our context, the prescriptive approach deals with observational data of the form

{(xi, yi, zi)}. Each observation i consists of features xi ∈ R18 (the ensemble members’

predictions), an applied prescription zi ∈ {0, 1} (reduce plant production or not), and an

observed outcome yi ∈ R (real-world costs associated with the decision). Our prescriptive

task is determining the optimal policy that, given the features x, prescribes the treatment

z that results in the best outcome y. The prescription involves choosing between one of two

available decisions, either to reduce production or not.

Table 4 outlines the reward matrix used to train the Optimal Policy Tree and quantifies

the costs associated with false positives and false negatives. First, no cost is incurred if the

forecasted scenario and actual conditions are favorable. When the plant operates at reduced

levels as a conservative measure after forecasting a dangerous scenario, the factory incurs a

loss of earnings of $2,000 per hour due to decreased production and the expenses of injecting

odor control chemicals to minimize unpleasant odors in the surrounding area. On the other
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Forecasted Actual Cost Decision Public Health
Scenario Scenario (USD) Outcome Impact
Favorable Favorable 0 Full level production Low
Dangerous Favorable 2000 Reduced level production + anti-odor injection Low
Dangerous Dangerous 2000 Reduced level production + anti-odor injection Low
Favorable Dangerous 4000 - 20000 Full production before urgent shutdown + anti-odor injection High

Table 4: Reward matrix for training the Optimal Policy Trees based upon forecasted and actual weather
conditions.

hand, the failure to forecast a dangerous scenario leads to the plant operating at a normal

level and polluting the nearby city when the weather conditions turn dangerous. Afterward,

the plant operators must shut down production urgently and inject odor control chemicals.

We propose evaluating various public health costs ranging from $2,000 to $18,000. This

parameter yields differing trade-offs between pollution and costs and can be determined

based on the decision-makers’ conservatism and risk aversion level.

2.5. Training Protocol

The data covers August 2015 to March 2022, totaling 43,952 hourly samples. The data

set was divided into training (60%), validation (20%), and testing (20%) sets. The validation

set was used to tune the hyperparameters of the machine-learning models. The ensemble

models and optimal policy tree parameters were 5-fold cross-validated on the predictions

made on the validation set. All models were evaluated on the unseen test set corresponding

to the real-world deployment phase.

Software Tools. We used Python 3.8 [18] and the scikit-learn package [19] to implement all

machine learning models. We used the Python package InterpretableAI [20] to train Optimal

Policy Trees.

3. Results

This section reports the results of the two components of the framework: predictive

and prescriptive. We have successfully implemented the predictive component on machine
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Model Hyperparameters Values
Elastic Net regularization α coefficient 0.2, 0.4, 0.6, 0.8, 1

ℓ1 ratio 0.5, 0.7
Decision Trees maximum tree depth 5, 6, 7, 8, 9, 10

minimum samples per split 3, 5, 7
minimum samples per leaf 4, 6

Random Forest bootstrap True, False
number of estimators 100, 150
maximum tree depth 5, 6
min samples split 4, 6

LightGBM number of leaves 31, 60
maximum tree depth 4, 6
learning rate 0.1, 0.3
lambda ℓ1 0, 1

XGBoost number of estimators 100, 150
maximum tree depth 4, 6
learning rate 0.1, 0.3

Elastic Net Ensemble regularization α coefficient 0.2, 0.4, 0.6, 0.8, 1
ℓ1 ratio 0, 0.25, 0.5, 0.75, 1.0

Table 5: Hyperparameters searched for our models.

learning-based wind forecasts since December 2020, and we are currently implementing

the prescriptive component on operational decision-making recommendations. As such, we

report real-world deployment results for the predictive component and back-tested results

for the prescriptive component.

3.1. Predictive Methodology Results

Tables 6 and 7 report the results of the wind speed and wind direction forecasting

tasks for all the regression models we deployed at the Safi site: the baseline model, Elastic

Net, Decision Tree, Random Forest, Light GBM, XGBoost, and the Elastic Net ensemble

model. For each wind prediction task, we report the mean absolute error (MAE) and the

expected shortfall at 85%, corresponding to the average error on the worst 15% samples. The

baseline model refers to the weather forecast guidance from the Moroccan Meteorological

Department.
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All machine learning models generally improve upon the baseline model, with XGBoost

and Light GBM achieving the lowest errors. In addition, the ensemble model further im-

proves the MAE and expected shortfall, especially in near-term horizons. Looking at speed

prediction, for less than 12-hour lead time, the best-performing machine learning approaches

can outperform the baseline model by 40-50% in both metrics. For longer-term predictions

with more than a 12-hour horizon, the best-performing machine learning approaches can

outperform the baseline model by 20-30%. We observe a similar trend for angle prediction:

machine learning approaches can achieve 30-50% improvement upon the baseline model

for less than 12-hour lead time predictions and 10-20% improvement for longer lead time

predictions.

In addition, we observe that the ensemble model outperforms the best single machine

learning model consistently across tasks and error measures. The advantage of an ensemble

model is especially strong for less than 12-hour lead time predictions. The ensemble model

can achieve 0-8% MAE reduction depending on the specific lead time (except for a slightly

worse performance on the longer-term expected shortfall for speed).

Lead Time Metric Baseline Elastic Net Decision Tree Random Forest LightGBM XGBoost Ensemble
1 0.96 0.54 0.56 0.53 0.49 0.49 0.48
2 1.05 0.71 0.76 0.71 0.64 0.65 0.63
3 1.18 0.80 0.85 0.8 0.72 0.72 0.70
6 MAE 1.61 0.91 0.97 0.91 0.85 0.85 0.84
12 (m.s−1) 1.94 1.0 1.05 0.99 0.96 0.96 0.94
24 1.37 1.07 1.11 1.08 1.06 1.06 1.04
36 2.13 1.17 1.20 1.17 1.16 1.16 1.15
48 1.57 1.17 1.22 1.18 1.17 1.17 1.17
1 2.37 1.40 1.48 1.36 1.27 1.28 1.26
2 2.60 1.80 1.95 1.77 1.63 1.65 1.61
3 Expected 2.94 2.01 2.16 1.99 1.81 1.82 1.78
6 Shortfall 3.82 2.27 2.45 2.25 2.15 2.14 2.14
12 85% 4.55 2.48 2.64 2.44 2.38 2.40 2.39
24 3.51 2.61 2.77 2.60 2.58 2.58 2.59
36 4.93 2.79 2.89 2.76 2.75 2.75 2.77
48 4.03 2.80 2.95 2.79 2.78 2.78 2.81

Table 6: Beta test results on the test set for wind speed prediction for all models. We record the MAE and
expected shortfall at 85% level for different lead times ranging from 1 hour to 48 hours.
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Lead Time Metric Baseline Elastic Net Decision Tree Random Forest LightGBM XGBoost Ensemble
1 25 26 14 13 12 13 12
2 26 31 20 18 17 17 16
3 29 35 23 21 19 19 18
6 MAE 41 40 29 28 24 24 24
12 (m.s−1) 58 43 35 33 31 31 30
24 42 45 40 38 37 38 36
36 70 49 45 42 42 42 41
48 52 48 47 44 44 44 42
1 73 82 59 53 51 51 51
2 79 103 77 72 68 68 68
3 Expected 89 117 90 83 76 75 74
6 Shortfall 115 132 108 107 94 95 95
12 85% 136 138 127 125 117 117 117
24 127 143 138 135 134 135 132
36 155 148 145 140 140 140 140
48 145 148 146 143 143 143 143

Table 7: Beta test results on the test set for wind direction prediction for all models. We record the MAE
and expected shortfall at 85% level for different lead times ranging from 1 hour to 48 hours.

3.2. Prescriptive Methodology Results

Table 8 compares the performance of several models for recommending binary hourly

actions (anticipating dangerous conditions or maintaining production levels). It includes

the baseline model, the previous Elastic Net ensemble model, and a series of Optimal Policy

Trees (OPT) with different health costs associated with false negatives (-4000, -6000, -

10000, -15000, and -20000). Recall that the health cost used to train OPTs is a parameter

to tune conservatism towards pollution of our models: a higher cost leads to more cautious

care towards recommending operation at normal levels. Table 8 reports the number of

false positives and false negatives for each model. A false positive refers to when the plant

operates with reduced production levels and undertakes actions to mitigate the odor impact,

while in reality, these actions are unnecessary. A false positive is therefore associated with

a loss of $2000 corresponding to the anti-odor injection costs and consequences of reduced

production. On the other hand, a false negative refers to when the plant is operating at

normal levels, while in reality, weather conditions are unfavorable, and pollution is carried

to the city, leading to an air pollution incident.

As a remark, since the implementation of this component is underway, and we do not

track the actual decisions undertaken by operators, we showcase back-testing results using
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the baseline model as a benchmark. We simulate decisions using forecasts from the baseline

and ensemble models and translate them into decisions using Table 1. The actual decisions

can deviate from the simulated decisions because operators make decisions based on forecasts

and expertise.

In general, our framework can lead to reductions in both false positives and false neg-

atives. Specifically, looking at Optimal Policy Tree models, different choices of health cost

lead to different levels of conservatism, which gives the modeler the space to explore the

trade-off between cost savings and pollution mitigation goals. As the health cost increases,

false negatives decrease, and false positives increase. Comparing the OPT models with the

baseline model shows that the OPT models have overall better performance, as they have

lower health costs and fewer false positives.

Model Health Cost False Positives False Negatives Cost savings Pollution Reduction
Baseline 288 110 0% 0%
Ensemble 51 133 82% -21%

-4000 20 113 93% -3%
Optimal -6000 32 102 89% 7%
Policy -10000 106 74 63% 33%
Tree -15000 174 58 40% 47%

-20000 282 38 2% 65%

Table 8: Performance of three families of models for recommending actions. We include the baseline model,
the Elastic Net ensemble, and a series of optimal policy trees trained with different health costs associated
with false negatives.

In addition, the OPTs provide interpretable insights on how the different ensemble mem-

bers are used to prescribe, as illustrated by Figure 4 below. In particular, we notice that

a simple tree like the one corresponding to choosing a health cost of $15,000 (tree on the

right below) can reduce pollution emissions during dangerous scenarios by 47% and save

40% of the unnecessary costs. Conveniently, it also relies on only three ensemble mem-

bers: XGBoost and Elastic Net predicting speed, and Random Forest predicting the cosine

component of the wind direction. It also suggests that different ensemble members capture

different aspects of the data and together make better recommendations.
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Figure 4: Optimal policy trees trained using a health cost of $10,000 (left) and $15,000 (right). The trees
illustrate an interpretable decision-making process to arrive at certain recommended decisions (prescription
options). Prescribe x1 corresponds to maintaining production rate while Prescribe x2 corresponds to
reducing plant operations and injecting odor control chemicals.

4. Conclusion

In conclusion, our study introduces a novel and data-driven solution to mitigate the

harmful effects of air pollution caused by industrial plants in urban areas. We provide a

comprehensive solution for managing industrial operations and weather-related risks by com-

bining advanced weather forecasting and decision-making models. Our framework, which

incorporates both predictive and prescriptive machine learning models, was successfully im-

plemented at the OCP Safi production site, resulting in improved forecasting accuracy and

decision-making efficiency. Given the crucial role of weather in industrial environmental

impact, we believe that our approach can be adapted and effectively applied in similar

settings.

Page 17 of 20



Our framework has demonstrated its value in managing air pollution in chemical pro-

duction sites, and the results achieved at the OCP Safi site hold the potential to inspire

a more sustainable and responsible chemical production industry globally. The flexibility

and adaptability of our approach enable its core components of data enhancement, real-time

monitoring, and prescriptive models to be universally applied to different chemical facto-

ries. Although each production site presents unique challenges, our data-driven approach

can be customized to meet the needs and conditions of each location. Utilizing the latest

advancements in weather forecasting and data analysis, we aim to assist factories in effec-

tively managing air pollution and promoting the safety and well-being of the surrounding

communities.
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