
Catastrophe Insurance Pricing: A Robust Optimization Approach

Dimitris Bertsimas1,2 and Cynthia Zeng1

1Operations Research Center, Massachusetts Institute of Technology
2Sloan School of Management, Massachusetts Institute of Technology

Abstract

The escalating frequency and severity of natural disasters, exacerbated by climate change, underscore

the critical role of insurance in facilitating recovery and promoting investments in risk reduction. This

work introduces a novel Robust Optimization (RO) framework tailored for the calculation of catastrophe

insurance premiums, with a case study applied to the United States National Flood Insurance Program

(NFIP). To the best of our knowledge, it is the first time a RO approach has been applied to for disaster

insurance pricing. Our methodology is designed to protect against both historical and emerging risks, the

latter predicted by advanced machine learning models, thus directly incorporating amplified risks induced

by climate change. The framework offers three key contributions: first, using the US flood insurance data

as an example, our model demonstrates a robust capacity to cover losses and produce surpluses, with

a smooth balance transition through parameter fine-tuning; second, it introduces an equitable premium

pricing structure, aligning higher premiums with regions of heightened risk; third, the framework offers

versatility and generalizability, making it adaptable to a variety of natural disaster scenarios, such as

wildfires, droughts, etc. This work not only advances the field of insurance premium modeling but also

serves as a vital tool for policymakers and stakeholders in building resilience to the growing risks of

natural catastrophes.

1 Introduction

Global climate change causes serious consequences in climate variability and weather extremes, which could

lead to more frequent and costly natural disasters worldwide [28]. As shown in Figure 1, the number of

disasters worldwide has increased tremendously during the last decades. Enhanced risks for catastrophic

events, such as tropical cyclones, draughts, floods, heatwaves, can inflict severe damage and losses on indi-

viduals, businesses, communities, and the entire society. It is crucial to mitigate disaster risks and facilitate

climate change adaptation [22]. The International Panel on Climate Change (IPCC) has emphasized the
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Figure 1: Number of major disasters globally since 1900, maintained by the EM-DAT database [1]. A
disaster is defined as an event which overwhelms local capacity, necessitating a request to the national or
international level for external assistance. Disasters include: flood, storm, earthquake, drought, landslide,
extreme temperature, wildfire, volcanic activity, mass movement (dry), glacial lake outburst, fog, etc.

need for financial instruments for disaster risk management and climate change adaptation [20]. Catastrophe

insurance emerges as a crucial risk management tool, offering financial support in recovery and incentivizing

investments for mitigating efforts.

Catastrophe insurance, also known as disaster insurance, focuses on large-scale, low-frequency events that

have the potential to cause widespread damage. This form of insurance typically covers disasters such as

hurricanes, earthquakes, floods, terrorist acts, and pandemics. The rarity of such catastrophic events compli-

cates the insurance process, as traditional actuarial methods fall short, often due to a lack of comprehensive

historical data. Compounding this challenge, climate change is leading to more regular and destructive

climate-related catastrophes, which traditional reliance on historical data alone tends to underestimate. In

contrast to conventional insurance policies that spread risks across insured individuals, catastrophe insur-

ance confronts a temporal problem of matching of regular influx of annual premiums with the irregular and

unforeseeable distribution of payouts for losses. In the United States, catastrophe insurance has historically

been managed predominantly through national programs. The National Flood Insurance Program (NFIP),

for example, is the principal provider for flood insurance in the country, covering more than 95% of the

underwriting risks [24]. However, the NFIP’s actuarial effectiveness has been the subject of scrutiny, with

the program operating at a significant deficit—19 billion US dollars as of 2023—highlighting the need for

reform in the structuring of such insurance schemes [17]. The entry of private insurers into the catastrophe
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coverage market has been deemed crucial, yet the inherent complexities associated with rare events have

led to minimal participation from private entities [23]. Indeed, many private insurers are withdrawing from

regions deemed “uninsurable”, due to escalating risks from climate change [12].

In this work, we present a Robust Optimization (RO) framework for catastrophe insurance premium pricing

designed to protect against uncertain losses. To the best of our knowledge, this is the first work using an RO

approach to set disaster insurance premiums. We develop the framework and implement it to flood insurance

using the National Flood Insurance Program (NFIP) data. The main contributions are three-fold:

• We present a Robust Optimization (RO) framework for catastrophe insurance premium pricing against

uncertain losses. This framework encompasses two distinct uncertainty sets for potential losses: one

retrospective, grounded in historical loss distributions, and the other prospective, utilizing risk esti-

mates derived from machine learning predictions.

• We apply our RO framework to US flood insurance using data from the National Flood Insurance

Program. We employ historical data from 1975 to 2012 to construct the uncertainty sets and train

machine learning models, and we evaluate model performance using data from 2013 to 2022. We

benchmark against two baselines: the actual NFIP policies and premiums derived from cumulative

moving average (CMA) rules. Our evaluations indicate that the RO model outperforms in effectively

covering losses and does so equitably, ensuring high-risk states bear appropriate premiums.

• We highlight the adaptability and generalizability of our framework, suggesting the potential appli-

cation of an RO approach to pricing a wide range of catastrophic events, such as wildfires, droughts,

extreme weather events.

The structure of the paper is as follows. In Section 2, we review the relevant literature. In Section 3 we

introduce the problem and outline the Robust Optimization (RO) framework. In Section 4, we demonstrate

the application of our framework through a case study on flood insurance in the United States. We explain

the model parameter estimation and details on the machine learning risk prediction model. We compare

our model results against two baselines: historical NFIP premiums and Cumulative Moving Average (CMA)

scheme. Finally, we draw conclusions in Section 5.

2 Literature Review

This paper is related to the catastrophe modeling literature, often abbreviated at CAT modeling. It is a

pivotal method for assessing and managing risks associated with extreme events employed by insurance com-

panies. [14] offers a comprehensive analysis of how catastrophe models are employed for risk assessment and
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management purposes. Most CAT models are proprietary, with AIR Worldwide, Risk Management Solutions

(RMS), and EQECAT being the major players in the private sector; and the open-source HAZUS model

developed by FEMA [27]. One major challenge of the CAT modeling approach lies in the lack of historical

data due to the rarity of the events, and thus standard actuarial techniques fail to capture tail-event risks.

In addition, catastrophe modeling depends on scenario simulations, which can be both numerous and lead

to largely varying outcomes. How to combine different“what-if” scenarios remains a challenge to decision

makers [19]. Our paper illustrates the promise of an optimization-based approach to model uncertain losses

and climate risks directly, thus offering transparency and offer greater robustness against rare events.

Our work is also related to the literature of disaster management. Many works have focused the problem

of general resource allocations to different programs or regions under a given budget constraint [29, 2, 26].

[30] discusses fund allocation for flash flood reduction, and [21] further incorporates the use of insurance

premiums as a source of funding. As highlighted by [19], the critical issue in insurance policy lies in the

need for decision-making robustness in the face of climate change’s uncertainties. There is also growing work

on using robust optimization in disaster relief management to deal with uncertainties [4, 31]. Few works

discuss the use of optimization for catastrophe insurance pricing directly, [8] applies stochastic optimization

to the Dutch Flood insurance scheme, and [9] discusses an integrated catastrophe management approach by

incorporating CAT models with stochastic optimization methods. Our study fills in the gap by proposing a

robust optimization framework by modeling uncertain losses and integrating machine learning forecast risks

to address the increasing unpredictability of weather events driven by climate change.

Finally, this work broadly belongs to the climate finance literature, and see [16] for a comprehensive overview.

[7, 15] examine the public policy implications in funding climate change adapation. It is critical to design

new tools to financially manage weather risks. [25] discusses the role of insurance sector in decreasing the

vulnerability of human and natural systems. [3, 13] propose the use of municipal bonds to finance natural

disasters. [18] considers insuring climate change induced risks across broad business spectrum. Our paper

adds to the literature by proposing a new design of the weather-related insurance contract to manage weather

risk.

3 Optimization Framework for Catastrophe Insurance

3.1 Robust Optimization

Robust Optimization (RO) is a useful methodology for handling optimization problems with uncertain data

[5]. It has been applied to address uncertainties in various fields, including operations research, engineering,
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and finance. Consider a generic linear programming problem

min
x

{
cTx | Ax ≤ b

}
where c ∈ Rn,b ∈ Rm and A ∈ Rm ×Rn. Robust Optimization addresses the problem where data (c, A,b)

are uncertain, but are known to reside in an uncertainty set U . Based on prior information or assumptions,

we construct the uncertainty set U to express the uncertainties in data. We are addressing a family of

problems for each realization of (c,A,b) ∈ U . Therefore, we can reformulate the problem into its Robust

Counter part

min
x

{
cTx | Ax ≤ b ∀(c,A,b) ∈ U

}
.

3.2 Nominal Formulation

We consider setting insurance premiums for N locations for the insurance period of T years, which we denote

with variable pi,t, where i = 1 . . . N , t = 1 . . . T . We are given historical losses for each location for each year

in the past T0 years, which we denote with l̄i,t, where i = 1 . . . N , t = 1 . . . T0. We assume that the future

losses for each location i n the insurance period of T years with li,t, i = 1 . . . N , t = 1 . . . T . Note that this

quantity is unknown, but we assume the knowledge of it to introduce a simple deterministic LP formulation

to introduce the basic requirements and set up the generic framework. In the next subsections, we expand

on how to model this uncertain quantity through Robust Optimization framework.

We formulate an LP model to set insurance premium price. The objective function is to minimize the overall

premium collected, or the least required premium needed:

min
pi,t

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t. (1)

We require the premium price to cover projected losses with an additional buffer amount, denoted by δ,

which is set at constant for each location. In addition, to model the consumer behavior that as we increase

premium price less consumers are willing to purchase the insurance product, we introduce a damping function

f : R → {0, 1}, a monotonically decreasing function representing decline in demand due to higher premiums.

Details of the choice of the damping function will be discussed later. Thus we require:

T∑
t=1

f(pi,t) ∗ pi,t −
T∑

t=1

f(pi,t) ∗ li,t ≥ δ i ∈ [N ]. (2)

In addition, we impose a constraint to require premiums collected over consecutive years to vary slowly, in



In preparation for Management Science

order to prevent drastic changes in insurance premiums:

|pi,t − pi,t−1| ≤ γ1 i ∈ [N ], t ∈ [T ]. (3)

Variables pi,t should be positive, for each location i for each period t:

pi,t ∈ R+ i ∈ [N ], t ∈ [T ]. (4)

3.3 Robust Optimization Formulation

In the nominal formulation, we assume the knowledge of projected loss for each of the future period. How-

ever, this quantity is unknown and highly uncertain. In this subsection, we expand on how to construct

uncertainty sets to describe this quantity.

The overall optimization formulation is the same as before, except for constraint 3, where we require the

inequality to hold for all losses in the uncertainty set:

T∑
t=1

f(pi,t) ∗ pi,t −
T∑

t=1

f(pi,t) ∗ li,t ≥ δ i ∈ [N ], ∀li,t ∈ U . (5)

We propose two uncertainty sets to model the uncertainties of the future losses: with Central Limit Theorem

(CLT) and with Machine Learning driven risks.

3.3.1 Uncertainty Set from Central Limit Theorem

Based on the assumption that for each specific location, future flooding losses follow the distribution of

historical losses. We adopt the central limit theorem (CLT) to form the uncertainty set. Formally, for a

fixed location i, Li,t, t ∈ [T ] are independent, identically distributed random variables with mean l̄i and

standard deviation σ̄i, where l̄i, σ̄i are historical mean and standard deviation for location i. Then as

proposed in [6], we can assume the quantities Li,t take values such that

∣∣∣∣∣
T∑

t=1

Li,t − T · l̄i

∣∣∣∣∣ ≤ γ2 · σi

√
n, (6)

where γ2 is a small constant to denote how close future losses distribution should deviation from the normal

distribution. In other words, we describe the uncertain quantities Li,t as values in the uncertainty set

UCLT
i = {(li,1, . . . , li,T ) :

|
∑T

t=1 li,t − l̄i|
σi

√
T

≤ γ2}, (7)
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where l̄i, σi can be computed for each location i using historical data. The larger we set γ2, the more

conservative the optimization model, and higher premiums will be. As a remark, we derive one uncertainty

set for each location using the historical mean and standard deviation for that location to acomodate different

flooding risk profiles. We derive the uncertainty sets separately for each location UCLT
i .

3.3.2 Uncertainty Set from (Machine Learning) Risk Models

In addition, suppose we have some information on how future losses should be, which could be informed by

risk models. We can formulate such model predictions as uncertainty sets. One way of obtaining such risk

prediction is through machine learning models, as recent advances in ML models demonstrate capabilities

for models to predict accurate multi-year forecasts. In this work, we build machine learning models to obtain

flooding risks, see greater details in the next section. Nevertheless, one can obtain such risk predictions from

physical-based models, or other alternative approaches.

We define a major flood event to be flood incurring loss over a threshold loss level Θ. Suppose we have

model predictions for the risk that at location i, the probability of having one flood event in the next k years

to be qi,k. Then we can express the model prediction as

P(
k∑

t=1

zi,t = 1) = qi,k, (8)

where zi,t ∈ {0, 1} are binary variables denoting if there is a major flood at location i at time t. By modeling

such, we assume having more than one major event is negligible for reasonable k. Since model predictions

are probabilistic predictions which can have errors, and we want to be conservative and protect against

suffering potential huge losses. Thus, assuming actual incidence of having a major flood is close to the model

predictions, we can express zi,t as random variables taking values in an uncertainty set as

U = {zi,t : |
k∑

t=1

zi,t − qi,k| ≤ ϵ,

k∑
t=1

zi,t ≤ 1}, (9)

where the constant ϵ is a parameter to indicate how close we believe the model predictions are to actual

probabilities. The larger the value, the less confident and more conservative our model will be. Therefore,

linking variables zi,t to li,t, and assuming the future losses will be bounded by the expected value coming

from suffering a major flood, we model the uncertainty set of the future loss for each location i as follows

UML
i = {zi,t, li,t :

k∑
t=1

li,t ≤ Θ ·
k∑

t=1

zi,t, |
k∑

t=1

zi,t − qi,k| ≤ ϵ,

k∑
t=1

zi,t ≤ 1}. (10)
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3.3.3 The Robust Counterpart

Combining uncertainty sets from Central Limit Theorem and from Machine Learning risk models, the robust

optimization formulation of the problem is as follows

min
pi,t

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑

t=1

f(pi,t) ∗ li,t ≥ δ, ∀li,t, zi,t ∈ UCLT
i , li,t ∈ UML

i , i ∈ [N ]

||pi,t − pi,t−1|| ≤ γ1, i ∈ [N ], t ∈ [T ]

pi,t ∈ R+, zi,t ∈ {0, 1}, i ∈ [N ], t ∈ [T ].

(11)

Since the uncertain occurs only in one constraint, we can write Problem 11 as a min-max problem

min
pi,t

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑

t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ]

||pi,t − pi,t−1|| ≤ γ1, i ∈ [N ], t ∈ [T ]

li,t ∈ UCLT
i , i ∈ [N ]

li,t, zi,t ∈ UML
i , i ∈ [N ]

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(12)

Next, we consider the inner problem

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑

t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ]

li,t ∈ UCLT

li,t, zi,t ∈ UML

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(13)
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For the inner problem, we can treat pi,t as constants, thus the inenr problem can be simplified to

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

li,t

li,t ∈ UCLT

li,t, zi,t ∈ UML

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(14)

Note that the uncertainty set is composed of two separate uncertainty sets UCLT and UML. We can thus

decompose the inner problem into two subproblems, and the objective of the original problem takes the

maximum of the two subproblems. Solving each subproblem separately, we can then plug back the analytical

solution from each subproblem back to the original problem.

Proposition. The overall min-max problem is equivalent to

min
pi,t

T∑
i,t

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
1

T

T∑
t=1

f(pi,t) ∗ LCLT
i ≥ δ ∀i ∈ [N ]

k∑
t=1

f(pi,t) ∗ pi,t −
1

k

k∑
t=1

f(pi,t) ∗ LML
i ≥ δ ∀i ∈ [N ]

||pi,t − pi,t−1|| ≤ γ1 ∀i ∈ [N ], t ∈ [T ]

(15)

where

LCLT
i = T · l̄i + γ2 · σi

√
T (16)

LML
i = Θ ·min{1, qi,k + ϵ}. (17)

As a remark, we take the average ”damping” over losses li,t because we solve for the optimal
∑

t li,t.

Proof. Consider the first subproblem

max
li,t

N∑
i=1

T∑
t=1

li,t

|
T∑

t=1

li,t − T · l̄i| ≤ γ2 · σi

√
T ∀i ∈ [N ]

li,t ∈ R+,

(18)
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looking at the constraint, we can take out | · | since we are maximizing over li,t, and rearranging terms

T∑
t=1

li,t ≤ T · l̄i + γ2 · σi

√
T ∀i ∈ [N ] (19)

and optimality is achieved at equality, we can solve for i.e., l∗i,t s.t. :

T∑
t=1

li,t = T · l̄i + γ2 · σi

√
T ∀i ∈ [N ]. (20)

Hence we can compute for all location i ∈ [N ], and denote the analytical solution to the first subproblem as

LCLT
i :

LCLT
i :=

T∑
t=1

l∗i,t = T · l̄i + γ2 · σi

√
T
√
(T1 − T0) (21)

Consider now the second subproblem

max
li,tzi,t

N∑
i=1

T∑
t=1

li,t

k∑
t=1

li,t ≤ Θ ·
k∑

t=1

zi,t

|
k∑

t=1

zi,t − qi,k| ≤ ϵ

k∑
t=1

zi,t ≤ 1

li,t ∈ R+, zi,t ∈ {0, 1}.

(22)

Without loss of generality, we relax zi,t to take continuous value zi,t ∈ [0, 1], because we can treat
∑k

i zi,t as

one variable taking continuous values in [0, 1]. Thus looking at the constraints concerning zi,t, and take out

| · | since we are maximizing over zi,t, we get z∗i,t achieve optimality at

k∑
t=1

z∗i,t = min{1, qi,k + ϵ} (23)

which gives l∗i,t at optimality at
k∑

t=1

l∗i,t = Θ ·
k∑

t=1

z∗i,t. (24)

Combining with the solution from the first subproblem given by equation 21 we have the sum of future loss
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for each location given as follows

T∑
t=1

l∗i,t = T · l̄i + γ2 · σi

√
T (25)

k∑
t=1

l∗i,t = Θ ·min{1, qi,k + ϵ}, (26)

where the first equality bounds the entire future period T , the second equality bounds the period depending

on machine learning model’s risk forecast horizon k. As a remark, we can have multiple risk models for

different forecasting horizons.

3.4 Choices of demand damping function f(p)

Recall that to model the behavioral aspect that as insurance premium increase there is less demand for it,

we introduce the damping function f(p) : R → {0, 1} into the constraint. To preserve the convexity property

of the overall problem, we model the behavior using piece-wise linear functions under the scope of this work.

In the next section, we explain in greater detail on the estimation using NFIP data, as well as sensitivity

analysis on the choice of the function.

As a remark, as we damp demand, we correspondingly damp the covered loss in the constraint. Since the

inner problem gives the the overall loss over the forecasting period T , i.e., LCLT
i gives the maximum loss

deduced from the uncertainty set over period T , we have taken the corresponding damping term to be the

average over T periods, i.e., 1
T

∑T
t=1 f(pi,t).

4 Case Study for US National Flood Insurance

4.1 Data

We used two redacted datasets from the National Flood Insurance Program (NFIP) on claims and poli-

cies respectively. Both data sets are created and maintained by Federal Emergency Management Agency

(FEMA). The claims transaction data provide details on NFIP claims transactions across from all states in

the United States [10]. This dataset consist of 2570089 lines of claim transactions ranging, dated from 1970.

Due to limited data availability in the early years, we included data from 1975 to 2022. For this study, we

aggregate data into state level on an annual basis, and have used the following features: date (’dateOfLoss’),

state, claim amount (’amountPaidOnBuildingClaim’).

The policy premium data contains 228664 lines of data, covering 54 states and 6704 unique zip codes, and
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contains policies from 2009 to 2022 [11]. We use the policy data as a benchmark to compare model perfor-

mance between last ten years of testing period from 2013 to 2022. Similar to the claims data, we aggregated

data into state level on an annual basis, and have used the following features: state (’propertyState’), date

(’policyTeminationDate’) and premium (’totalInsurancePremiumOfThePolicy’).

In this work, we consider setting insurance premium at state level on an annual basis. We consider setting

the premium for the last 10 years, from 2013 to 2022. We trained machine learning models using data from

1975 to 2012, to derive risks in the testing period from 2013 to 2022. We used machine learning derived risks

as parameter input for the optimization model, and drive premiums using the RO framework.

4.2 Optimization Model Parameter Estimation

4.2.1 Computing LCLT
i

Recall from equation 16, to compute LCLT
i we need to compute the historical mean and variance for each

state. Table 1 exhibits the historical mean and standard deviation for the top 10 most costly states, computed

on the annual basis.

State Max Mean Std Median
LA 3,763,390 45,084 58,467 20,583
TX 8,973,270 44,046 65,420 19,801
NJ 4,022,518 32,727 58,000 13,042
NY 9,467,720 35,725 74,510 13,306
FL 9,100,033 25,351 63,809 8,052
MS 10,000,000 46,603 94,924 14,823
NC 1,294,678 21,725 41,345 7,992
PA 1,889,793 19,040 41,943 6,939
AL 4,900,000 28,059 95,474 8,466
SC 1,764,000 25,574 43,752 10,088

Table 1: Statistics of top 10 most costly states in the US, including maximum annual claim loss, mean,
standard deviation and median.

4.2.2 Demand Damping

In this work, we model the demand sensitivity to insurance premium through a piece-wise linear demand

function. We estimate the decline rate using historical data from several states. Figures 2 and 3 below shows

the scatter plot of number of policy holders in a year against the mean policy premium of that state at that

year. Different states have different degrees of sensitivity to price, but in general we observe a downward

trend of decline in policy holder number as a function of increased price. For the illustrative purpose of this

work, we do not specify different sensitivity in different states, but use the same demand damping function
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across all states.

Figure 2: (a) Demand damping estimation for
Louisiana state (LA).

Figure 3: (b) Demand damping estimation for
New York state (NY).

We use the following piece-wise linear demand damping function to model demand damping

f(p) =


1 if p ≤ P0

1−m · (p− P0) if p ≥ P0 and f(p) ≥ cmin

cmin otherwise

(27)

where P0 is the minimum premium at which demand damping starts to occur, and cmin is the minimum

fraction of demand. In this work, we choose P0 to be 1
10 · Pmax

hist , a fraction of maximum historical premium

ever charged. We choose cmin to be 0.2 representing at least 20% of the total demand is preserved regardless

of price. We experimented with different demand damping rate: m = 1/Pmax
hist . Figure 4 illlustrate several

choices of the demand damping curve.

4.3 Machine Learning Model

The goal of the machine learning model is to predict the risks of total loss surpassing a certain threshold for

each state in the next 1-K years.

4.3.1 Data Processing

First we kept data from 1975 to 2022 due to limited availability in prior years. We have dropped claims

where claim amount is missing. We have dropped data from the following states, ’MP’(Northern Mariana

Islands), ’AS’ (American Samoa), ’GU’ (Guam), ’DC’ (District of Columbia), due to limited availability. In

total, we have data from 53 states across 48 years.
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Figure 4: Different piece-wise linear demand damping curves corresponding to different rate of decline.

To construct the machine learning model, first, we aggregate data to state and annual level. The index of

the data is two levels: state and year. For missing data, we performed linear interpolation within each state

using previous and later years. Then for each state at a particular year, we construct the following features:

state (categorical), current year annual loss, past 1-5 years annual loss. Current and past year losses are

numerical features, where as state (categorical) feature is treated with one-hot encoding.

We train binary classification models to predict the target, with 1 indicating for a particular state at a

particular year, the state will suffer an annual loss passing through the threshold Θ in the next 1 to K

years. We have experimented with three threshold values, corresponding to 90th, 95th and 99th percentile

annual claim amount values across all states over all training data, corresponding to USD 18,558,788, USD

50,688,672 and USD 321,903,271. In addition, we have experimented with three K values, corresponding to

3, 5, 10 years respectively.

4.3.2 Training and Testing Protocols

We split the data set chronologically into training period from 1975 to 2011, and testing period from 2012

to 2022. We experiment with two standard machine learning models, logistic regression and XGBoost. We

employed 3-fold cross validation to search for the best parameters for each type of models. The search space

for hyperparameter tuning can be found in Table 2 below.
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Model Hyperparameters Values

XGBoost number of estimators 100, 150
maximum tree depth 4, 6

learning rate 0.1, 0.3
Logistic Regression C 0, 0.2, 0.4, 0.6, 0.8, 1

penalty L1, L2

Table 2: Hyperparameters searched for our models.

Figure 5: Map illustrating machine learning (ML) predicted risks for all states surpassing 90th-percentile
flooding risk within a 5-year time frame from 2016. Regions are color-coded, with darker shades indicating
a higher probability of predicted risks.

4.3.3 Prediction Results

Figure 5 illustrates machine learning predicted risks for all states surpassing 90th percentile flooding risk

within the next 5-year time frame on 2016. For each state, we produce one prediction for each year over

the testing period, for each threshold, and for 3-year, 5-year, 10-year time frames. Table 3 4 5 record out of

sample prediction results using testing data, corresponding to data between 2012 to 2022. We treat data in

the testing period on a rolling basis, and we drop the years where we do not have target data, i.e., in year

2019, we predict for K=3 but not for K = 5 or 10. We remark that accuracy is generally higher for longer

forecasting horizons. This is likely due to the following reasons: first, longer forecasting horizon lead to

higher probability of flood, which leads to more balanced data; second, we have less testing samples. We use

the probabilistic prediction results for each state at each testing year qi,k as input to construct uncertainty

sets for the robust optimization model as given by equation 17.
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Model
n pred = 3 n pred = 5 n pred = 10

logreg xgb logreg xgb logreg xgb

auc 0.743 0.776 0.763 0.808 0.767 0.912
f1 0.630 0.665 0.593 0.735 0.621 0.817

accu 0.693 0.675 0.632 0.736 0.623 0.830
accu bl 0.625 0.706 0.605 0.753 0.641 0.809
precision 0.407 0.457 0.520 0.625 0.658 0.777
recall 0.437 0.793 0.362 0.901 0.500 0.967

Table 3: Out of sample accuracy for 90% percentile threshold prediction, i.e., annual loss passing 18558788.
We experiment two families of models, logistic regression (logreg) and XGBoost (xgb). We predict for 3 time
horizons, for 3, 5, 10 years respectively.

Model
n pred = 3 n pred = 5 n pred = 10

logreg xgb logreg xgb logreg xgb

auc 0.818 0.871 0.818 0.897 0.794 0.921
f1 0.684 0.673 0.700 0.744 0.764 0.763

accu 0.856 0.781 0.808 0.792 0.830 0.774
accu bl 0.665 0.742 0.699 0.829 0.736 0.820
precision 0.300 0.306 0.368 0.460 0.595 0.560
recall 0.391 0.688 0.516 0.891 0.500 0.938

Table 4: Out of sample accuracy for 95% percentile threshold prediction, i.e., annual loss passing 50688672.

4.4 Computational resources

The source codes for this study, implemented in Julia 1.7 and Python 3.9, are publicly accessible at [repository

link]. The convex optimization problems were solved using Ipopt and Gurobi solvers, with machine learning

models trained on a local machine with 4 Intel CPUs on a Macbook Pro personal computer. Comprehensive

documentation detailing the methodology and specific parameters can be found in the repository’s code

comments.

4.5 Results

We implement the robust optimization with linearly decreasing demand decline rate and risk forecasts

obtained from the trained machine learning models. We benchmark our outcomes against two established

baseline policies and undertake a sensitivity analysis to assess the impact of our model’s parameter selections.

As argued in [?], we evaluate model performance on two key criteria:

• Effectiveness, measured by the capability to offset losses, a criterion inspired by the existing deficit in

the NFIP program.

• Equity of premium distribution, a criterion based upon the observation that states with higher risks

account for the majority share of losses.
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Model
n pred = 3 n pred = 5 n pred = 10

logreg xgb logreg xgb logreg xgb

auc 0.920 0.945 0.922 0.956 0.952 0.992
f1 0.704 0.687 0.737 0.771 0.835 0.906

accu 0.910 0.950 0.909 0.943 0.925 0.962
accu bl 0.809 0.646 0.786 0.731 0.958 0.979
precision 0.253 0.215 0.313 0.380 0.556 0.714
recall 0.696 0.304 0.640 0.480 1.000 1.000

Table 5: Out of sample accuracy for 99% percentile threshold prediction, i.e., annual loss passing 321903271.

We evaluate performance during the testing period, the last ten years of available data in the NFIP data set

between 2013 to 2022. For the rest of the section, we choose γ1 to be 50000, and δ to be 10000.

4.5.1 Baseline Models

We compare results against two baseline policy premiums. First, we use historical premiums charged for

each state, which is referred to as ’hist’. Second, we set the premium to be the cumulative moving average

loss up to that year, which we refer to as ’CMA’. We compute the cumulative moving average loss as follows

pCMA
i,t =

1

t

t∑
t′=0

li,t′ . (28)

4.5.2 Sensitivity Analysis

We examine the model sensitivity to parameter choices in our model. Specifically, we examine the effect of the

value of γ2 and the demand damping rate m. Recall that γ2 is the parameter controlling how conservative

the CLT uncertainty set given by equation 16, and the demand damping rate controls how fast demand

declines in response to increase in price given by equation 27. To examine the overall performance of the

premium, we compute the the cumulative surplus S across all states over the testing period as follows

S(γ2) =

N∑
i=1

T1∑
t=1

pi,t −
N∑
i=1

T1∑
t=1

lacti,t . (29)

Figure 6 shows the level of surplus as a function of different γ2, with different demand damping rate. The

two dotted line shows the constant surplus computed by two baselines: using the actual premiums collected

during this period and the CMA rule. We observe that both baselines incur a loss over the testing period,

with historical premiums resulting in about 20 billion loss, and CMA rule resulting in 8 million loss.

We let γ2 to take values between 0 and 1.5 at a stepsize of 0.1, and resolve the optimization model at each γ2

value, and compute the sum of surplus across all states across testing years. γ2 = 0 corresponding to convex
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optimization without uncertainty, and γ2 = 1.5 with the maximum degree of uncertainty. As we increase

the value of γ2, the size of the uncertainty set increases, and the model becomes more conservative resulting

in surplus as expected. We remark that the surplus breaks even when γ2 takes value between 0.6 and 0.7.

And we observe a smooth increase in surplus as γ2 increases.

In addition, we experiment with three demand damping rates: no damping, m1 = 1/Pmax
hist , m2 = 1/(2 ∗

Pmax
hist ), with m2 damps twice as fast as m1. Similar as above, we experiment with varying γ2 corresponding

to the different demand damping rates. We observe that the choice of demand damping is less significant

compared with the variation of γ2.

Figure 6: Surplus (or loss) computed during 2012 to 2022 across all states when vary different levels of γ2.
Two dotted lines demonstrate the level of surplus from two baseline models: historical surplus calculated
from the actual premiums collected, cma surplus is computed using the cumulative moving average.

4.5.3 Effectiveness in Covering Losses

In figures 7a and 7b, we illustrate respectively the financial balance for two baseline policy schemes. The

balances are calculated at a state level as the difference between cumulative premiums and cumulative losses,

over the testing period from 2013 to 2022. Our analysis reveals that the NFIP premium consistently oper-

ates at a deficit across all states, averaging a shortfall of approximately 1.9 billion dollars annually. This

underscores the fact that the NFIP considerably undercharges in every state. In a parallel observation, the

CMA premium scheme also results in a deficit, albeit at a lower average of 830 million dollars per year.

These findings underscore the limitations of relying on historical averages as indicators for insurance pricing,
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especially in the context of a shifting climate landscape.

On the other hand, recall that the balance outcome of the RO approach is contingent upon the selection

of the parameter γ2, which orchestrates a gradual transition between deficit and surplus scenarios. Figure

8a and 8b showcase two distinct selections for γ2. With γ2 = 0.6, the model incurs an annual deficit of

96 million. When γ2 = 0.8, it yields an annual surplus of 180 million. These observations underscore the

inherent flexibility and potential advantage of the RO approach, granting policy providers the discretion to

determine the desired surplus level. Detailed state level losses and premiums can be found in the appendix.

(a) NFIP premium scheme (b) CMA premium scheme

Figure 7: Average balance, computed as premium charged subtracting losses incurred, during the the testing
period 2013-2022 by two baseline policy schemes: historical NFIP premiums on the left, and CMA rule on
the right. For both schemes, the policy runs deficit across all states during the testing years. NFIP scheme
runs at deficit on average 1.9 billion per year; CMA scheme runs on average at 830 million per year.

4.5.4 Equity in Premium Attribution

Figure 9 illustrates the total claimed losses since 1975. We observe that the total loss peaks whenever a

major flooding event occurs in a certain state. In the US, most of the claim losses can be attributed to the

high risk states, thus arising the equity concern in measuring the quality of insurance premium schemes. As

displayed in Table 6, the eight most expensive states contribute to a cumulative 77% of the total loss during

the testing period between 2013-2022, with Texas, Louisiana and Florida contributing 41%, 17% and 9%

respectively. These observations highlight the need to achieve equity in premium distribution, aligning high

risk states with high premium requirements.

Figure 10 presents the cumulative claim losses alongside various insurance schemes for the top 8 most costly

states during the testing period. It is evident that the NFIP scheme consistently undercharges these high-cost

states. Conversely, the CMA rule tends to overcharge states with significant historical losses. For instance,
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(a) RO scheme with γ2 = 0.6 (b) RO scheme with γ2 = 0.8

Figure 8: Average balance, computed as premium charged subtracting losses incurred, during the the testing
period 2013-2022 by Robust Optimization (RO) policy schemes using two values of γ2 at 0.6 on the left and
0.8 on the right respectively. Recall that γ2 parameter ensures a smooth transition between deficit to surplus
in the RO scheme. For γ2 = 0.6, the policy runs at a deficit at 96 million per year on average; for γ2 = 0.8,
the policy runs at a surplus at 180 million per year on average.

State Sum Percentage
TX 9.277e9 41.1%
LA 3.790e9 16.8%
FL 1.931e9 8.6%
NC 8.943e8 4.0%
NJ 4.610e8 2.0%
SC 4.543e8 2.0%
PA 2.742e8 1.2%
NY 2.494e8 1.1%

Rest States 5.214e9 23.1%

Table 6: Table showing the cumulative loss by top 8 costly states and their respective percentages during
the testing period of 2013-2022.

the aftermath of Hurricane Katrina in 2005 inflated the CMA premium for Louisiana, even though the state

did not experience comparably high losses in the subsequent testing period. In comparison, the RO scheme

offers premiums that more closely align with actual losses. A smiliarly trend is noticeable for other states like

New Jersey and New York. Finally, it is worth noting that none of the schemes adequately accounted for the

substantial losses experienced in Florida. One contributing factor may be the occurrence of several major

floods in Florida during the testing period. Our robust optimization (RO) formulation’s machine learning

(ML) uncertainty set is designed to protect against only a single major flood event over the entire period.
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Figure 9: Trend in claim loss since 1975. Dotted line displays the total claimed loss in each year across all
states. Gree, yellow and blue solid lines display the claimed loss among three high risk states.

5 Conclusion

In conclusion, we present a Robust Optimization (RO) framework to catastrophe insurance premium pric-

ing. We first present a nominal linear optimization formulation to introduce the problem of setting insurance

prices for rare catastrophe events, and present a robust optimization formulation with two distinct uncer-

tainty sets. The Central Limit Theorem (CLT) uncertainty set protects against deviations from historical

losses, and the Machine Learning (ML) uncertainty set to incorporate predicted risks. We derive the robust

counter part by solving the inner problem in closed form, and present a convex optimization re-formulation.

We applied the framework to the US flood insurance and evaluate our performance against two baseline

benchmarks: the US National Flood Insurnace Program (NFIP) premiums and CMA premiums. We em-

ployed historical data from 1975 to 2012 to construct the uncertainty sets and train machine learning models,

and we used the last ten years of available NFIP data to evaluate RO insurance scheme against the two bench-

marks: the actual historical premium policies and premiums derived from cumulative moving average (CMA)

rules. We demonstrate the superiority of an RO approach in two metrics: effectiveness and equity. First,

RO model is able to effectively cover losses, achieving a smooth transition from deficit to surplus balance

depending on model parameter value, thus granting policy providers the discretion to determine the desired

surplus level. Second, RO model is able to distribute risk in a more equitable manner, penalizing high risk

states and charging premiums that more closely align with actual losses.
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Figure 10: Cumulative claim losses and various insurance schemes across top 8 costly states during the
testing period of 2013-2022. Blue bars represent the actual loss incurred, orange bars represent the NFIP
premiums, gray bar represent CMA premiums, and yellow bars represent RO premiums with γ2 = 0.8.

Finally, we emphasize the versatility and broad applicability of our framework. This underscores the possi-

bility of employing the RO approach not just in the context of flood insurance, but also in pricing various

catastrophic events such as wildfires, droughts, and other extreme weather conditions. The adaptability of

our model suggests it could be a valuable tool in diverse scenarios, offering insights into risk assessment and

pricing strategies across different disaster types.
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States Actual Loss Historical CMA RO
TX 9.277e9 2.573e7 2.013e9 1.869e9
LA 3.790e9 1.472e7 3.423e9 7.809e9
FL 1.931e9 4.797e7 8.891e8 1.243e9
NC 8.943e8 7.608e6 2.805e8 3.351e8
NJ 4.610e8 3.892e6 1.187e9 2.819e9
SC 4.543e8 2.298e6 1.454e8 2.277e8
PA 2.742e8 5.312e6 2.225e8 3.736e8
NY 2.494e8 8.809e6 1.113e9 2.749e9
MO 2.456e8 8.216e5 1.318e8 1.858e8
AL 2.441e8 9.455e5 1.991e8 3.622e8
IL 1.751e8 5.969e6 1.017e8 1.275e8
GA 1.418e8 1.796e6 7.459e7 1.161e8
TN 1.376e8 3.703e5 6.861e7 2.688e8
MS 1.349e8 2.587e6 5.460e8 1.385e9
VA 1.263e8 5.028e6 1.338e8 2.206e8
CA 1.223e8 9.417e6 1.109e8 1.647e8
KY 9.890e7 1.335e6 6.048e7 8.834e7
OK 8.995e7 3.414e5 3.730e7 4.490e7
MI 8.985e7 9.781e5 1.683e7 2.400e7
MA 8.966e7 1.909e6 7.601e7 1.199e8
AR 8.253e7 3.807e5 2.796e7 3.477e7
OH 7.341e7 9.350e5 5.855e7 7.911e7
CO 6.864e7 3.352e5 1.646e7 3.121e7
WA 6.507e7 8.077e5 5.142e7 8.058e7
WV 6.214e7 2.652e5 5.563e7 7.825e7
IA 6.199e7 3.615e6 5.754e7 1.129e8
IN 5.729e7 3.964e5 5.163e7 8.820e7
NE 5.376e7 4.980e5 1.070e7 1.553e7
MD 5.120e7 1.184e6 5.531e7 1.146e8
CT 4.416e7 1.571e6 1.038e8 2.159e8
HI 4.082e7 1.194e6 2.016e7 3.140e7
WI 3.647e7 2.852e5 1.842e7 3.221e7
PR 2.513e7 6.745e4 1.386e7 1.852e7
KS 2.335e7 2.326e5 1.710e7 2.435e7
AZ 2.241e7 1.788e6 9.509e6 1.073e7
SD 1.955e7 3.187e4 9.313e6 1.468e7
VI 1.655e7 6.708e4 7.506e6 9.855e6
DE 1.236e7 9.825e5 1.401e7 2.327e7
MN 1.127e7 3.031e5 2.943e7 5.342e7
ME 9.955e6 2.126e5 5.587e6 8.210e6
NM 9.583e6 6.783e5 1.396e6 2.235e6
RI 8.369e6 3.438e5 1.791e7 3.378e7
MT 7.249e6 1.210e5 1.759e6 2.832e6
AK 5.741e6 3.131e5 6.964e6 1.167e7
ND 5.695e6 5.272e5 2.635e6 4.303e6
NV 5.675e6 3.960e5 5.248e6 8.800e6
UT 5.536e6 3.584e5 6.061e6 9.523e6
NH 5.270e6 1.757e5 9.513e6 1.564e7
VT 3.510e6 1.014e5 2.708e6 4.024e6
ID 3.413e6 1.386e5 3.045e6 4.747e6
DC 3.019e6 2.712e5 2.157e6 3.180e6
GU 2.693e6 1.899e4 1.083e6 1.464e6
WY 9.151e5 3.269e4 4.766e5 6.040e6
Total 1.991e10 1.669e8 1.161e10 2.193e10

Table 7: Cumulative premium collected based on different regimes of the 2013-2022 testing period. The
table is sorted by the total actual loss from the most experienced to the least in the period. ”Actual Loss”
represents the actual loss during those years, ”Historical” represents the historical policy premium collected,
”CMA” shows results from using the CMA baseline policy, and ”RO” displays results from implementing
the risks obtained from the RO model, with γ2 = 0.8.
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States Actual Loss Histocial CMA RO RO+ML
TX 9.277e9 -9.251e9 -7.264e9 -7.408e9 -7.408e9
LA 3.790e9 -3.775e9 -3.669e8 4.019e9 4.019e9
FL 1.931e9 -1.883e9 -1.042e9 -6.887e8 -6.886e8
NC 8.943e8 -8.867e8 -6.138e8 -5.592e8 -5.592e8
NJ 4.610e8 -4.571e8 7.260e8 2.358e9 2.358e9
SC 4.543e8 -4.520e8 -3.089e8 -2.266e8 -2.266e8
PA 2.742e8 -2.689e8 -5.165e7 9.943e7 9.945e7
NY 2.494e8 -2.406e8 8.634e8 2.499e9 2.499e9
MO 2.456e8 -2.448e8 -1.138e8 -5.981e7 -5.979e7
AL 2.441e8 -2.432e8 -4.498e7 1.180e8 1.180e8
IL 1.751e8 -1.691e8 -7.341e7 -4.761e7 -4.759e7
GA 1.418e8 -1.400e8 -6.723e7 -2.575e7 -2.572e7
TN 1.376e8 -1.372e8 -6.896e7 7.531e6 1.312e8
MS 1.349e8 -1.324e8 4.111e8 1.250e9 1.250e9
VA 1.263e8 -1.213e8 7.494e6 9.425e7 9.428e7
CA 1.223e8 -1.129e8 -1.142e7 4.239e7 4.242e7
KY 9.890e7 -9.756e7 -3.841e7 -1.058e7 -1.055e7
OK 8.995e7 -8.961e7 -5.265e7 -4.508e7 -4.505e7
MI 8.985e7 -8.887e7 -7.302e7 -7.602e7 -6.585e7
MA 8.966e7 -8.776e7 -1.365e7 3.019e7 3.021e7
AR 8.253e7 -8.215e7 -5.457e7 -4.784e7 -4.776e7
OH 7.341e7 -7.248e7 -1.486e7 5.672e6 5.698e6
CO 6.864e7 -6.830e7 -5.218e7 -6.506e7 -3.743e7
WA 6.507e7 -6.427e7 -1.366e7 1.548e7 1.551e7
WV 6.214e7 -6.187e7 -6.508e6 1.609e7 1.612e7
IA 6.198e7 -5.837e7 -4.441e6 5.086e7 5.088e7
IN 5.729e7 -5.689e7 -5.663e6 3.088e7 3.091e7
NE 5.376e7 -5.327e7 -4.306e7 -4.212e7 -3.823e7
MD 5.120e7 -5.001e7 4.115e6 6.341e7 6.344e7
CT 4.416e7 -4.259e7 5.960e7 1.717e8 1.717e8
HI 4.082e7 -3.962e7 -2.066e7 -9.461e6 -9.420e6
WI 3.647e7 -3.618e7 -1.804e7 -6.703e6 -4.262e6
PR 2.513e7 -2.506e7 -1.126e7 -6.646e6 -6.611e6
KS 2.335e7 -2.311e7 -6.249e6 9.614e5 9.983e5
AZ 2.241e7 -2.062e7 -1.290e7 -1.176e7 -1.168e7
SD 1.955e7 -1.952e7 -1.024e7 -4.915e6 -4.868e6
VI 1.655e7 -1.648e7 -9.041e6 -6.723e6 -6.692e6
DE 1.236e7 -1.138e7 1.645e6 1.088e7 1.091e7
MN 1.127e7 -1.097e7 1.816e7 4.209e7 4.212e7
OR 1.063e7 -8.655e6 7.707e6 2.158e7 2.162e7
NV 5.718e6 -5.595e6 1.454e6 7.741e6 7.773e6
NM 5.298e6 -5.012e6 -2.121e6 -3.276e5 8.948e6
NH 5.060e6 -4.842e6 4.723e6 1.135e7 1.138e7
AK 4.877e6 -4.816e6 -2.819e6 -2.836e6 1.481e7
ME 4.615e6 -4.444e6 3.594e6 8.166e6 8.197e6
ID 4.202e6 -3.980e6 -2.626e6 -2.073e6 7.200e5
VT 3.482e6 -3.401e6 9.952e6 3.107e7 3.112e7
RI 3.384e6 -2.855e6 1.924e7 4.146e7 4.148e7
ND 2.975e6 -2.753e6 5.273e7 1.087e8 1.087e8
MT 2.026e6 -1.899e6 3.045e5 2.222e6 9.335e6
UT 1.604e6 -1.573e6 -3.656e5 6.087e5 4.930e6
DC 1.586e6 -1.574e6 -7.791e5 -1.206e5 -1.889e5
WY 9.151e5 -8.824e5 -4.385e5 -1.475e5 5.125e6
Total 1.991e10 -1.975e10 -8.306e9 1.805e9 2.020e9

Table 8: Table displaying the surplus (or loss) over the testing period across all states. Surplus is computed
using different premiums collected subtracted by the actual loss. Table is ranked from the highest cumulative
cost to the lowest in the state level.


